The XY model, the Bose Einstein Condensation and Superfluidity in 2d (**II**)

B.V. COSTA

UFMG - BRAZIL

LABORATORY FOR SIMULATION IN PHYSICS

A Guide to Monte Carlo Simulations in Statistical Physics" by Landau & Binder

Outline

- The planar Rotator and the XY model
- Equations of motion
- Vortices
 - Dynamics
- The BKT transition
- Final Remarks

The Planar Rotator

$$\mathcal{H}_{PR} = J \sum_{\langle i,j \rangle} \hat{S}_i \cdot \hat{S}_j = J \sum_{\langle i,j \rangle} \left(S_i^x S_j^x + S_i^y S_j^y \right) = J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j)$$

 $\hat{S} = |S|(\cos\theta\,\hat{x} + \sin\theta\,\hat{y})$

This model has no true dynamics because $S_i^z \equiv 0$

To introduce some dynamics let us consider the Anisotropic Heisenberg model

The XY Model Anisotropic Heisenberg

$$\mathcal{H}_{XY} = J \sum_{\langle i,j \rangle} \hat{S}_i \cdot \hat{S}_j = J \sum_{\langle i,j \rangle} \left(S_i^x S_j^x + S_i^y S_j^y + \lambda S_i^z S_j^z \right)$$

 $\hat{S} = |S|(\cos\Theta\cos\Phi\hat{x} + \cos\Theta\sin\Phi\hat{y} + \sin\Theta\hat{z})$

Now, we consider:

- Θ is small
- Θ and Φ vary smoothly

The XY Model Continuum Limit

$$\begin{split} \Theta_{i\pm 1,j} &= \Theta(x\pm a, y) = \Theta(x, y) \pm a \frac{\partial\Theta}{\partial x} + \frac{a^2}{2} \frac{\partial^2 \Theta}{\partial x^2} + O(a^3), \\ \Theta_{i,j\pm 1} &= \Theta(x, y\pm a) \\ \sin(\Theta_{i\pm 1,j}) &= \sin\Theta \pm \frac{a}{2} (\sin\Theta \mp 2\cos\Theta) \frac{\partial\Theta}{\partial x} + \frac{a^2}{2} \frac{\partial^2 \Theta}{\partial x^2} \cos\Theta + O(a^3), \\ \sin(\Theta_{i,j\pm 1}) &= \sin\Theta \pm \frac{a}{2} (\sin\Theta \mp 2\cos\Theta) \frac{\partial\Theta}{\partial y} + \frac{a^2}{2} \frac{\partial^2 \Theta}{\partial y^2} \cos\Theta + O(a^3), \\ \cos(\Theta_{i\pm 1,j}) &= \cos\Theta \pm \frac{a}{2} (\cos\Theta \pm 2\sin\Theta) \frac{\partial\Theta}{\partial x} + \frac{a^2}{2} \frac{\partial^2 \Theta}{\partial x^2} \sin\Theta + O(a^3), \\ \cos(\Theta_{i,j\pm 1}) &= \cos\Theta \pm \frac{a}{2} (\cos\Theta \pm 2\sin\Theta) \frac{\partial\Theta}{\partial x} + \frac{a^2}{2} \frac{\partial^2 \Theta}{\partial x^2} \sin\Theta + O(a^3), \\ \cos(\Theta_{i,j\pm 1}) &= \cos\Theta \pm \frac{a}{2} (\cos\Theta \pm 2\sin\Theta) \frac{\partial\Theta}{\partial x} + \frac{a^2}{2} \frac{\partial^2 \Theta}{\partial y^2} + O(a^3), \\ \cos(\Theta_{i,j\pm 1}) &= \cos\Theta \pm \frac{a}{2} (\cos\Theta \pm 2\sin\Theta) \frac{\partial\Theta}{\partial x} + \frac{a^2}{2} \frac{\partial^2 \Theta}{\partial y^2} + O(a^3), \\ \cos(\Theta_{i,j\pm 1}) &= \cos\Theta \pm \frac{a}{2} (\cos\Theta \pm 2\sin\Theta) \frac{\partial\Theta}{\partial x} + \frac{a^2}{2} \frac{\partial^2 \Theta}{\partial y^2} + O(a^3), \\ \cos(\Theta_{i,j\pm 1}) &= \cos\Theta \pm \frac{a}{2} (\Theta_{i,j} - \Phi_{i\pm 1,j}) = 1 - \frac{1}{2} a^2 \left(\frac{\partial^2 \Phi}{\partial y^2} + O(a^3) \right)^2, \end{split}$$

The XY Model and the Plane Rotator

Taking the limit $a \rightarrow 0$, and retaining only termos up to O(2) (We use $\lambda = 0$)

$$H_{AH}^{cont} = -2J \int d\mu \left[\left(\frac{\partial \Phi}{\partial x} \right)^2 + \left(\frac{\partial \Phi}{\partial y} \right)^2 \right].$$

$$Z_{AH} = \int d\mu e^{-J\sum_{\langle i,j\rangle}\cos(\phi_i - \phi_j)}, \qquad d\mu \equiv d\Phi_1 d\Phi_2 \dots d\Phi_n d\Theta_1 d\Theta_2 \dots d\Theta_n.$$

The integrals over the out-of-plane angle fluctuations, Θ , can readily be done, so that, the averages of in-plane quantities doesn't depends on Θ in a clear indication that it is in the same universality class as the Planar Rotator model.

The XY Model Equations of Motion

We start written:

written: $\frac{dS_i^{\alpha}}{dt} = i\hbar[\mathcal{H}_{XY}, S_i^{\alpha}] \text{ where } \alpha = x, y, z$

In terms of the spherical angles

After	calculating	all	commutators	and	taking	the	classical	continuum I	imit

 $\dot{\Theta} = 2J[\cos\Phi\nabla^2(\cos\Theta\sin\Phi) - \sin\Phi\nabla^2(\cos\Theta\cos\Phi)]$

 $-\cos\Theta\dot{\Phi} = 2J\{\lambda\cos\Theta[\sin^2\Phi\nabla^2\sin\Theta + \cos^2\Phi\nabla^2(\sin\Theta\cos\Phi)] - \sin\Theta[\sin\Phi\nabla^2(\cos\Theta\sin\Phi) + \cos\Phi\nabla^2(\cos\Theta\cos\Phi)]\}$

 $\dot{\Theta}_n = \frac{\partial H/\partial \Phi_n}{\cos \Theta_n}, \quad \dot{\Phi}_n = \frac{\partial H/\partial \Theta_n}{\cos \Theta_n}.$

The XY Model Equations of Motion

 $\dot{\Theta} = 2J[\cos\Phi\nabla^2(\cos\Theta\sin\Phi) - \sin\Phi\nabla^2(\cos\Theta\cos\Phi)]$

 $-\cos\Theta\dot{\Phi} = 2J\{\lambda\cos\Theta[\sin^2\Phi\nabla^2\sin\Theta + \cos^2\Phi\nabla^2(\sin\Theta\cos\Phi)] - \sin\Theta[\sin\Phi\nabla^2(\cos\Theta\sin\Phi) + \cos\Phi\nabla^2(\cos\Theta\cos\Phi)]\}$

 $S^{\alpha}(x,y) = S^{\alpha}(-x,y), \quad \lim y \to \pm \infty$ $S^{\alpha}(x,y) = S^{\alpha}(x,-y), \quad \lim x \to \pm \infty$ $\Theta_{0} = 0 \text{ and } \Phi_{0} = \arctan \frac{y}{x},$

Which describes an in-plane vortex ($\lambda = 0$)

8

The XY Model Vortex Solution

Dynamics – Free vortex gas model

Borrowed from an older 1d model (H.J. Mikeska, Journal of Physics C 11 (1978) L29)

Kinks can freely move (No energy cost)

Vortex gas model : F.G. Mertens, A.R. Bishop, G.M. Wysin, C. Kawabata, Physical Review Letters 59 (1987) 117.

Vortices are too large to move. The model doesn't work.

3/21/18

Dynamics Vortex-antivortex

2222222

PPP111111111111111

1 ~~~~~~

م م م م م م ۰۰۰۰

سمرم م م مرمد مس م م م

alalala & a a a a a a a a a a a a a a

There is a local magnetization $m \propto r_0$

In a neutron scattering experiment we measure the local fluctuations of *m*

The quantity we want is:

→*r*₀

 $\mathsf{G}(r,t) \sim \langle r_0^2 \rangle \langle \rho_{pair}(0,0) \rho_{pair}(r,t) \rangle$

2020208

Dynamics – Magnon-Vortex interaction (Phase shifts)

 $\dot{\Theta} = 2J[\cos\Phi\nabla^2(\cos\Theta\sin\Phi) - \sin\Phi\nabla^2(\cos\Theta\cos\Phi)]$

 $-\cos\Theta\dot{\Phi} = 2J\{\lambda\cos\Theta[\sin^2\Phi\nabla^2\sin\Theta + \cos^2\Phi\nabla^2(\sin\Theta\cos\Phi)] - \sin\Theta[\sin\Phi\nabla^2(\cos\Theta\sin\Phi) + \cos\Phi\nabla^2(\cos\Theta\cos\Phi)]\}$

The behavior of small oscillations in presence of a vortex is given by solutions of the eq. of motion of the form $\Theta = \theta$ and $\Phi = \Phi_0 + \phi$, where $\theta, \phi \ll 1$ and Φ_0 is the static vortex solution

Only large wavelengths are relevant.

Dynamics - Conclusion

Vortices don't become "free" at high temperature.

The phase transition occurs when pairs vortices-antivortices are spontaneously created

The central peak is due to a vortex-antivortex creation annihilation process.

The KT Transition
$$G(r) \equiv \langle S(0) \cdot S(r) \rangle$$
 $G \sim r^{-\eta(T)}$ $\eta(T_{BKT}) = 1/4$ $G \sim e^{-r/\xi}$ Renormalization results $\eta(T_{BKT}) = 1/4$ $\xi(T) \approx e^{(bt^{-1/2})}$; $t = \frac{T - T_{BKT}}{T_{BKT}}$ $m_{XY} \equiv \frac{1}{V} \sum \sqrt{(m_x)^2 + (m_y)^2} = 0$ $\chi_{xy} \equiv \frac{1}{T}(m_{xy} - \langle m_{xy} \rangle)^2 = \begin{cases} \xi^{2-\eta}, T > T_{BKT} \\ \infty, T < T_{BKT} \end{cases}$ $C_v \equiv \frac{1}{r^2} \langle (E - \langle E \rangle)^2 \rangle$ is finite.The free energy is C^{∞}

The BKT transition – Fisher Zeros

 $T_{BKT} = 0.7003(3)$

The BKT transition – Fisher Zeros

Final Remark

As expected from the Mermin-Wagner theorem there is no long-range order in this model

The correlations decay to zero in both sides of T_{BKT}

However, the quasi-long range order at low *T* is enough to create a quasi-ordered phase

That is the origin of the superfluid transition in Bose fluid films and harmonically-trapped two dimensional ultracold Bose gases.

In other words:

The absence of BEC implies that $\lim_{r\to\infty} G(r) = 0$; however, if phase coherence falls slowly enough this shall turn out to be sufficient to induce superfluidity.

Thank you for your attention

Special thanks for this kind invitation

Visit our web site

http://www.fisica.ufmg.br/~simula/